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ASYMPTOTIC SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEMS* 

L. D. AKULENKO 

An estimate is obtained of solutions of the input and the averaged boundary value 
problems for standard systems /l-6/. Such problems occur in investigations of 
optimal oscillating processes, using the necessary conditions of optimality of the 

maximum principle /7/ (see, e.g., /E--12/). Specific formulations of problems of 

optimal control with mechanical content are investigated. 

1. Basic assumptions and statement of the problem. The use of quantities 

small relative to control effects in many applied problems of optimal control of quasilinear 

fluctuating processes leads to the investigation of boundary value problems of the maximum 

principle for standard systems over a specified asymptotically large time interval. BY 
combining the osculating phase variable with its corresponding conjugate in a single slow 

vector and eliminating on appropriate assumptions (see Sect.3) vectors of Lagrange coeffici- 

ents /lO,ll/ which are linear in the transversality relations at the left- and right-hand ends, 
we obtain the two point boundary value problem 

x' = EX (t, x), iW (5 (O), x (T)) = 0 (1.1) 

wherex istheunkown slow n-vector; t is the independent variable (time), t= LO, 7'1, T= @s-l, 
8 = const) 0; E is a small numerical parameter, EE [O, ~~1; X(t, z) and M(y, z), are specified 

vector functions of dimension n > 2. Note that in boundary value problems of the maximum 

principle the boundary condition (1.1) usually consists of %wo relations, one at the beginn- 

ing (t = 0) and the other at the end (t := T)of the control process 

M, (I (0)) = 0, MT (5 (T)) = 0. m, + rnr = n 

which are of dimensions m, and mT, respectively. 
If it is formally assumed that one of the quantitiesm,or mTis zero, Eqs. (1.1) are of 

the form of the Cauchy problem for whose analysis the method of averaging is widely used 

/l-6/. It is therefore important to establish as wide as possible conditions to be imposed 

on functions X(t,s) and M(Y, 2) that are sufficient for the solutions of the input (1.1) and 

the averaged boundary value problem to be sufficiently close. 

Let us assume that functions X andM satisfy the following conditions. 

1. Function X(t, .z) is determinate for all t-2 0, measurable in t for fixed XED,, 
where D, is an open connected set. 

2. The known requirement for the existence of an X uniform with respect to XED, 
averaged over t /l-33/ is replaced by a stricter one, namely, we assume that X (t. 5) is uni- 

formly quasiperiodic in t, i.e. that it represents a finite sum of functions X(‘)(t, I) (i :: 1, 
. ., k> 1) periodic in t of arbitrary constant periods Hi. 

3. Functions X(t,s) and 111 (Y, 2) are determinate for all z, y,z~ D, and uniformly con- 

tinuous with respect to I, y, and z. 

4. There exist constants Cx and Cnr> 0 dependent on U, such that 

IX 0, z) I < cx, I M (y, 2) I < CM, t ;I: 0, 5, y, z E u, (1.2) 

5. Functions X and 1$1 moreover satisfy the Lipschitz conditions with respect to s,.y,sC- 

D,, i.e. that there exist constants hr and hhf, generally dependent on D,, such that 

1 x (t, z’) - x (t, 5”) / .< hxl 5’ -z” 1, t ; 0, z’, I” E D, (1.3) 

I M (Y', z') -112 (Y", z") / < h.,~ (I y' - y” ) + 1 z' - 5" I), y', y", z', z" E D, 

For simplifying the proofs the stipulations (1.3) and further strengthened by the assump- 

tion of the existence of continuous and bounded partial derivatives 

I 8X 1 ax I < h-r, I JM 1 @J I < h.,~, I dM I 8z I < hnr (1.4) 

6. When the indicated requirements are satisfied, the mean of function X (t, 2) averaged 

over t is of the form XO (z, and uniform for all ZE D, 
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t+*s t+n 

X,(z) = linl f 
s 
X(s,x)&= 

i: 
x:'(a), 1>0, X:'(z)=+ s zX"'(s,s)ds, i=l F , . . . , i, (1.5) 

s-r.- 
t i=l f 

Function X,(x) has the properties 3-5. It was shown in /l-6/ that solutions of the 
Cauchy problems in certain domains of common initial values of input and averaged equations 
possess the property of being a-close to each other throughout the time interval te IO, 2'1. 

Let us consider besides the input boundary value problem (1.1) the simpler averaged in 
conformity with (1.51 problem 

d5/ dr =x, (5), IV (E (O), 5 (8)) = 0, t = Eb E 10, @] (1.6) 

We assume the existence of some solution E(T) of the boundary value problem (1.61, which 
belongs to region D,, for all T E to, @I and is unique. 

We shall investigate the question what are the additional conditions to be imposed on 
functions X(t,z) and iW(y,z) for the existence also of solution x(t,~) of the input boundary 
value problem, and how close that solution is to solution E(G) for t G IO, O&01, where EE 

(0, %I. 
Note that the construction of function E(T) is usually simpler, since the order of the 

integrated system of equations (1.6) is lesser by one that of (l-l), owing to the absence of 
dependence on t. Moreover, the system of Eqs. (1.1) derived from the maximum principle is 
Hamiltonian /7,10,11/. As shown in /lO,ll/, system (1.6) is also of Hamiltonian form with 
the known "energy" integral. Hence it is possible to reduce further the order of the system 
of differential equation by one. The numerical solution of the boundary value problem (1.6) 
is more convenient since integration is carried out over a shorter interval of slow time 
5 E [I,, B], 8 - 1, and the equations do not contain rapid oscillations. 

2. Evaluation of the closeness of solutions of the input and the averag- 
ed boundary value problems. The following constructive approach to the investigation 
of existence of solution r(t, E) of the input two-point problem (1.1) to the solution E (9, 
z =&t of the averaged problem (1.6). Hy virtue of assumptions l-5 in Sect.1 the Cauchy 
problem 

i = LX (t, x), .z (0) = a ED, c I),, t E IO, Tf (2.1) 

has a solution of the form /3,6/ 

r (G a, 8) ='p (t, a) + v (t, a, E) (2.2) 

where D, is a nonempty open connected set, (~(7, a) is a function continuously differentiable 
with respect to r@O, @] and aeDD, which represents the general solution of the Cauchy 
problem (2.1) 

%i Jz = X0 (9, E (0) = af&, 5 = (p(z, e) (2.3) 

According to /3,6/ function v in (2.2) is uniformly bounded with respect to t and E, 
and continuous with respect to a 

I u 1 .< &Cur lim v @, G, E) = v (t, a,, E), 
+%I* 

1 E 10, Tl, ati, a, ED,, C, = con&> 0, E E [O, Q] (2.4) 

The solution of the averaged boundary value problem E(T), which in conformity with 
(1.6) is determinate and corresponds to some parameter a =a* EL), in function v, (z, a) from 
(2.3). This value of a satisfies the nonlinear system 

M (a, cp (0, a)) = M* (a) = 0 (2.5) 

A similar solution s(t, E) of the input problem is obtained by substituting in (2.2) for 
parameter a its value determined by the relations 

M* (a) -i_ N (a, 8) = 0, N = i%!f (a, tp (0, a) + V(T, U, E))- M* (~2) (2.6) 

where function N is continuous with respect to aGD, and by virtue of (1.4) is uniformly 
bounded with respect to aGZDZ),: ] A’ j < EC.N, EE [O, ~1. 

For the investigation of the implicit function a (s)we assume that the roota*determined 
by (2.5) is simple, i.e. 

det (dM* (a*)/ aa) J; o (2.7) 

We seek root a en, of Eq. (2.6) of the form a=a*+a , where the unknown a continu- 
ously depends on E and vanishes when e -_O. It is determined by the equation 

(2.8) 
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where A is a continuous function of a, e when a* + aED,, EE IO, E+,] and identically vanishes 
for E = 0, f% = 0, and /A I= O{E+ la I). 

To calculate ct from (2.8) we use the method of successive approximations with A as the 
perturbation. This yields sequence ojtl =% +A (aj, e). j> 1 which for fairly small E > 0 
is uniformly bounded and equicontinuous. Using the Arzel: theorem /13/ it is possible to 
select a subsequence clj,-+CZ* uniformly converging to solution (2.8) and such that a,, =a* + 
a,,-+ a, e D,, a, = a* -t a*, I a* I< EC,. 

The following theorem is therefore valid. 

Theorem. When conditions (l-6) of Sect.1 and (2.5) and (2.71 are satisfied, the in- 
put boundary value problem (1.1) in the region 

tfzI0, 27, XED,, 8 E IO, EJ (2.9) 

admits for fairly small a~> 8 the solution s(t, E), in the s-neighborhood of the generating 
solution E(z) =m(r, a*) of the averaged problem (1.6) 

15 @, 4 - F (4 I < EC, c = const > 0 (2.10) 
Moreover, system (1.1) does not admit in region (2.9) solutions that do not satisfy estimate 
(2.10). Constant & in estimate (2.10) can be effectively determined in terms of the problem 
coefficients and size of regions D, and D,. 

Remarks.l". The uniqueness of solution of Eq. (2.8) and of the boundary value problem 
(1.1) is not guaranteed. For the existence and uniqueness of the input boundary value problem 
solution that becomes the generating one E(r) when $ zz 0 it is sufficient to impose in addi- 
tion to condition (2.7) the requirement that function A in (2.8) must satisfy the Lipschitz 
condition or has a uniformly bounded derivative with respect to CL. These stipulations entail 
the imposition on function o in (2.2) of similar conditions of smoothness with respect to the 
argument a. Note that an equal estimate of the quantity au/a= can be obtained for all ~EIO, 
Tl, (I ED,,, E E to, Eo] using the standard method based on the Gronwall-Bellman lemma /1,6,13/. 
However that requires higher smoothness properties of function x with respect to ZEJ?~$ 
namely, the existence of derivatives ax/&z uniformly bounded and satisfying the Lipschitz 
condition with respect to I E D, with constants that are independent of t and E. These 
conditions of smoothness are superfluous for constructing the first approximation. 

2O. The fulfillment of inequality (2.7) is essential, otherwise for &>(I branching of 
the root a*of Eq. (2.6) into quantities of order of fractional power /14/ is possible. The 
distinction between the generating and the exact solutions is generally of the order of the 
lower nonzero power of the small parameter. This critical case requires additional investiga- 
tion. 

x0. Note that in the particular case of the terminal control problem (the quality crit- 
erion @(z(T))-min) the boundary conditions for vector z= (a,~), where I: and p are, respectively, 
the phase and the conjugate vectors of the form z(O)=z',p(T) = -@'(z(T)). The inequality (2.7) 
is equivalent to the stipulation of the existence of a general solution 5= (5, '1) of the averag- 
ed system such that c(O,a. b)= a,q@,a,b)-= b, where parameter a belongs to the neighborhood of 
point 2' and b to that of point b* (z’) which is the simple root of the equation tb'(5(8,:-, b)) = 

- b. 

4’. The theorem formulated above and the preceding remarks are valid for every admissible 
root a* ED, of Eq.(2.5). Selection of the required a(&) = a* + a(e) is based on supplementary 
conditions. In the problem of optimal control the root a(e) is selected from the condition of 
minimum of functional calculated with reasonable accuracy with respect to E. In the formula- 
tion considered above the functional is calculated with the allowable error O(E). 

Thus the above theorem validates the application of the method of averaging in problems 
of optimal control. 

so. It should be also pointed out that more general systems with rotating phases 

a‘ = EA (% @% *')> Q = (a,, . f ., a$, z = et, 1 = LO% Tl, lp’ = v (1) + 8Y(T, a, I@‘), * = (I&’ . __&). Y,(T) > v* > 0 (2.11) 

reduce to equations of the form (1.1). Thus, when rz 1 and functions A and Y are, similarly 
to X, quasiperiodic in 9, the introduction of the new independent variable 0 and the slow 

variable gi by formulas 

system (2.11) reduces to the form (1.1). 
When r> 1 and additional requirement vl(?) s.. .EV,(T) similar to /2.12/ by vectorial 

substitude of system /2.11/ also lead to form (1.1). If ~,=roust> o (v, are arbitrary), then 
at decomposability condition of functions A and Y into finite trigonometric sums for the 



Asymptotic solution of two-point boundary value problems 449 

system (2.11), there is possible to reduce (1.1) to standard form. 

3. Application to problems of control. Let us consider the following problem 

of optimal control of the motion of the oscillating system: 

q'=Aq+'(t)+E[G(t, q)u+L(t, q)I, q(O)=q", s(q)],=!, ~=+iuldt+min, O,<t<T=Oe-'(3.1) 
0 

where q is the n-vector of generalized phase coordinates, u is the m-vector of control func- 

tions, A is a constant skew-symmetric matrix, and S is a specified function of dimension 

r < n. It is assumed that F, G, and L are quasiperiodic functions of t, of the form of 

trigonometric polynomials with a limited set of frequencies {a), and the coefficients are 

polynomials in q whose power does not exceed some k >O. 
Let all characteristic indices-eigenvaluesof matrix A -have zero real parts and the 

number of elementary divisors n be of the dimension of vector 4. Then the elements of the 

fundamental matrix Q(t) (Q(0) =I) and of its inverse Q-‘(t) =Q(-t) are quasiperiodic func- 

tions of t with the frequency basis {v} and the determinant IQ(t) 1 = 1. Some of these fre- 

quencies may be zero. Let us assume that the unperturbed system (3.1) (when E =O) has no 

resonance solutions, i.e. its particular solution q* is a bounded quasiperiodic function of 

t with the set of frequencies (51 -v, 52 +v} 

q* (t) = i Q (t -s) F (s) ds (3.2) 
0 

Using formula (3.2) we pass in system (3.1) to the osculating variable 5 

q = q* (t) + Q (t) 5 (3.3) 

Differentiating (3.3) we obtain by virtue of system (3.1) the equation of controlled 

motion for the slow variableI 
5'= E [g (6 5) 11 + h (t, x)1, x (0) = q” (3.4) 

g (t, I) = Q-’ (t) G (t, q* + Qx). h (t, x) = Q-’ (t) L (t, q* + Qr) 
where functions g and h are quasiperiodic in t with frequencies of the form {8,Q -v, n +v} 
and their combinations with integral multipliers whose magnitude does not exceed k. The 

coefficients of trigonometric polynomials are polynomials in x of power not higher than k. 

The respective boundary conditions for vectors(T)ass in conformity with (3.3) the form 

M (5 (T)) = 0, where M (z) = S (q* + Qs). F ormuca (3.1) for the functional J remains unchang- 

ed. 
To solve the obtained problem we apply the necessary conditions of the maximum principle 

according to which the optimal control u(t)and the phase trajectory r(t) satisfy the relations 

H = -(E/z) u* + E (p'gu + p'h)-+ max, 1 u I< 00, (3.5) 

u = g' (t, 5) p, g’ = (gir)‘, i = 1,. . ., n, j = 1,. . ., m 

r’ = E lgg’p j h (t, x)1, x (0) = q”, M(5(T)) =o, p.=-‘(p~~g+PP’$;, P(T)=(h/S), 

where His the Hamiltonian of the problem, p is the conjugate n-vector, and 1 is the vector 

of Lagrange multipliers of dimension r< n. Let us assume that I^ is the maximum rank of 

matrix (~M/~x)T, and determine from some r linear equations, for instance the first of the 

r, vector h:h* = p(‘)(T) [(~‘!W/&ZZ)~)]-~ which we substitute into the remaining (n -I') trans- 

versality conditions for p(T). We obtain (n -r) relations linking x(T) and p(T): p"-'(T) = 

h* (8dI I a&-". If n =r these relations are absent, and vector ?, need not be determined 

then. 
As the result, we have a boundary value problem of the type of (1.1) for a Hamiltonian 

system of standard form. It can be analyzed by the methods described in Sects.1 and 2, since 

it is of the form of a trigoriometric polynomial with a finite set of frequencies. As already 
indicated, the application of the method of averaging to system (3.5) is convenient because 

the averaged system remains Hamiltonian for which the energy integral 

(H) = (E / 2) p'rp + ep'h = const, r = (g'g> = r' 

remains unchanged in the first approximation with respect to E. In this formula angle brack- 

ets denote the averaging of respective expressions with respect to the explicitly appearing t. 
Averages exist and are smooth functions of the slow variables x and p. 

Let us consider the perticular case when the averaged system (3.5) is linear with respect 

to I and p, which occurs when 

g = g (t), h = h(O) (t) f- A (t) 5 + h(2) (t, z), (W) f 0 
The averaged equations have then constant coefficients. The sought solution of the two- 

point problem reduces to algebraic and finite equations. Let, for instance, it be required 
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to transfer the phase vector of the input system (3.1) to the final state 4(T)= (IT, where 

is a specified vector, i.e. S = Q- qr. 
(341'5) assume the form z(0) = I$, s(T)=XT, 

In conformity with (3.3) the boundary conditions 
where zr = Q-1 (2') [Q~-Q* (T)] is a known vector. 

Let us also assume that the fundamental matrix W (z) (z == EE) of the linear system with con- 
stant coefficients w'= E&W where h, = ci.> has been constructed. Then the averaged variabl- 
es E z <x>, q = <p> can be represented in the form 

Formula (3.6) implies that the n-vector of a is uniquely determinedand the constant n- 
vector of b is also uniquely determined from the boundary conditions when matrixX(@)is non- 
singular; we then have 

a = 4O, b = R-1 (8) [W (0)XT - < - 2 (0) h"l (3.7) 

Thus condition 12.7) is satisfied when 1 R (O)lfO, i-e. the boundary value problem 
admits the solution z(t,&),p(t,~) lying in the a-neighborhood of the constructed unique solu- 
tion (3.6), (3.7) of the averaged system for all TV [O,il’l. Substituting the approximate 
solution E(%),r) (T) into formula (3.5) we obtain for the control u and expression of the form 
of a program. Substituting 0 for 7, 0 --‘t for 0, and q for q” we obtain the approximately 
optimal control in the form of synthesis. In conformity with (3.1), (3.51, and (3.6) the 
minimum of functional J is 

accurate to quantities of the order of E. 
The above results can be extended to the case of systems (3.1) with slowly varying para- 

meters. 
Note that in a number of cases (see Remark 5O in Sect.2) mechanical systemswith variable 

parameters defined by equations 

q” + G (~1 ‘I’ + C Wq k- F CT, 17 Y ) + Et (T. t, q, 9', y, u), 11' = FY (s, t, 9, q', y, LC), g (OJ =m $', q' (0) = q’*, it (0) ==Y (3.8) 

can be reduced to form (1-l). In these equations G is the matrix of gyroscopic forces, C>U 
is the rigidity matrix, Y is the slow vector of controlled parameters of the system, and F, f, 
and Y are quasiperiodic functions of 1 of the K type in (1.1). It is assumed that for E = 0, 
't, Ij = ronst the vector q= q(t,t,a,6,c) is a quasiperiodic function of 1 for t>O and a b, and 
c are taken from some convex neighborhood of point q’,q”‘. f, 

Single-frequency oscillating mechanical systems are defined in a quasilinear approxima- 
tion by the particular case of Eqs. (3.8). Examples of the latter are provided by linear 
oscillator systems (including multidimensional plane of three-dimensional) with the equili- 
brium position controlled by the displacement velocity. The equations of quasilinear oscil- 
lators define two- or three-dimensional oscillations of a pendulum with variable suspension 
point and slowly varying length, etc. In the case of single-frequency oscillations arbitrary 
dependence of perturbations on arguments is admissibLe, since after the substitution in the 
equations of osculating variables of the s type, function X in (1.1) becomes Zri-periodic 
with respect to the variable 8 (see (2.12). 
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